

B E S T P R A C T I C E S W H I T E P A P E R

Software Development’s Classic Mistakes 2008

Version 1.02, July 2008

Approximately 500 software practitioners were surveyed to determine

the frequency and severity of common software development mistakes.

Twenty of the mistakes were found to occur at least half the time.

Most mistakes had either Serious or Moderate-Serious impacts. The

most damaging mistakes included unrealistic expectations, overly

optimistic schedules, shortchanged quality assurance, wishful thinking,

confusing estimates with targets, and excessive multi-tasking.

This white paper was downloaded from
www.construx.com/whitepapers

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 2

Contents

Introduction... 4
Summary of Survey Methodology.. 4

Most Frequent Classic Mistakes... 6
Most Severe Classic Mistakes.. 8
Most Damaging Classic Mistakes Overall... 10
Conclusions .. 13
Appendices... 14

A. Survey Methodology ... 14
Solicitation .. 14
Time Frame.. 14
Respondents .. 14
How Average Frequency of Occurrence is Modeled .. 15

B. Classic Mistakes by Reported Frequency ... 17
C. Classic Mistakes by Modeled Average Frequency.. 19
D. Classic Mistakes by Reported Severity... 21
E. Classic Mistakes by Average Severity .. 23
F. Classic Mistakes by Mistake Exposure Index (MEI) .. 25
G. Classic Mistake Descriptions .. 27
H. Classic Mistakes Summary, Alphabetical ... 35

About Construx... 39

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 3

List of Tables

Table 1 Mistakes That are Most Frequently Reported to Occur Almost Always or Often 6
Table 2 Approximate Frequency of Occurrence of the Most Common Classic Mistakes 7
Table 3 Mistakes That are Least Frequently Reported to Occur Almost Always or Often 7
Table 4 Approximate Frequency of Occurrence of the Least Common Classic Mistakes 8
Table 5 Mistakes That are Most Frequently Reported to Produce Catastrophic or Serious

Consequences When They Occur 9
Table 6 Average Impact of Classic Mistakes When They Occur 9
Table 7 Mistakes That are Least Frequently Reported to Produce Catastrophic or Serious

Consequences 10
Table 8 Highest Mistake Exposure Indices (MEI) 11
Table 9 Classic Mistakes with the Highest Mistake Exposure 11
Table 10 Classic Mistakes with the Lowest Mistake Exposure 12
Table A-1. Survey Respondent Roles 14
Table A-2 Survey Respondent Software Types 15
Table A-3 Category Modeling for Frequency of Occurrence Data 16
Table B-1 Frequency with Which Mistakes are Reported to Occur Almost Always or Often 17
Table C-1 Approximate Average Frequency of Mistakes 19
Table D-1 Frequency with which Mistakes are Reported to Produce Serious or

Catastrophic Consequences 21
Table E-1 Average Severity of Mistakes When They Occur 23
Table F-1 Complete List of Mistake Exposure Indices 25
Table G-1 Classic Mistake Descriptions 27
Table H-1 Classic Mistakes Summary, Alphabetical 35

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 4

Introduction
Construx’s Chief Software Engineer/CEO, Steve McConnell, introduced the concept of software
development’s classic mistakes in his book Rapid Development. He defined “classic mistakes” as
mistakes that have been made so often, by so many people, that the consequences of making
these mistakes should be predictable and the mistakes themselves should be avoidable. His origi-
nal list contained 36 classic mistakes.

In our work with clients since Construx was founded in 1996, we have found the concept of clas-
sic mistakes to be useful. Simply having a list of mistakes is useful. Being able to identify certain
mistakes as so common that they are classic, and therefore should be avoidable, is also useful.

To make the list of classic mistakes even more useful, in 2007 Construx consultants updated the
list of Classic Mistakes based on Construx’s work with hundreds of clients since 1996. The follow-
ing mistakes were added:

 Confusing estimates with targets

 Excessive multi-tasking

 Assuming global development has a negligible impact on total effort

 Unclear project vision

 Trusting the map more than the terrain

 Outsourcing to reduce cost

 Letting a team go dark (replaces the previous “lack of management controls”)

These additions and changes produced a total of 42 classic mistakes. For explanations of these
mistakes, see “Appendix G. Classic Mistake Descriptions.”

Construx then conducted a survey to determine how frequent and how serious these classic mis-
takes are.

Summary of Survey Methodology
The survey was conducted from June-July 2007. More than 500 people responded to the survey.
As Figure 1 illustrates, the roles of people who responded to the survey mirrors the roles of peo-
ple in the software industry overall.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 5

Lead / Architect
55%

Management
17%

Management /
Technical Dual

Role
6%

Technical
Individual

Contributor
22%

Figure 1 Respondents to Classic Mistakes Survey

Numerous types of software were represented in the survey. Figure 2 shows survey respondents
by type of software developed.

0%

10%

20%

30%

40%

50%

60%

70%

Web, general applications
Business Systems/In House
Shrink wrap/Commercial
Embedded
System Critical
Systems
SaaS
Other

Figure 2 Type of Software Developed

The most common kind of software developed by survey respondents was web software, followed
by business systems/in house software and shrink wrap/commercial software. Respondents were
allowed to choose more than one kind of software, and there were many respondents who indi-
cated that they are working on both web software and business systems as well as web software
and shrink wrap.

For more on the survey methodology, see Appendix A, “Survey Methodology.”

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 6

Most Frequent Classic Mistakes
For each mistake, respondents were asked to judge, based on their personal experience, how
frequently each mistake occurred. Respondents were able to select from the following re-
sponses:

 Almost Always (75%+)

 Often (50-74%)

 Sometimes (25-49%)

 Rarely (<25%)

 Don’t know / N/A

Respondents were instructed to focus on the “frequency of occurrence in the last three years or
last five projects, whichever is shorter.”

Table 1 lists the 10 mistakes that respondents listed as occurring Almost Always or Often.

Table 1 Mistakes That are Most Frequently Reported to Occur Almost Always or Often

Rank Classic Mistake Frequency of Response

1 Overly optimistic schedules 77%

2 Unrealistic expectations 73%

3 Excessive multi-tasking 71%

4 Shortchanged quality assurance 70%

5 Noisy, crowded offices 69%

6 Feature creep 69%

7 Wishful thinking 68%

8 Insufficient risk management 68%

9 Confusing estimates with targets 65%

10 Omitting necessary tasks from estimates 61%

For a complete table of mistakes and the frequencies with which they are reported, see Appen-
dix B, “Classic Mistakes by Reported Frequency.” For descriptions of the mistakes, see Appendix
G, “Classic Mistake Descriptions.”

Note that the percentages in Table 1 are not the frequency of occurrence of the mistake. Our
survey methodology did not make an exact determination of frequency of occurrence possible.
However, by using the midpoints of the survey ranges and computing a weighted average, we
were able to model an approximate frequency of occurrence of each mistake. Modeled frequen-
cies for the 10 mistakes in Table 1 are listed in Table 2.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 7

Table 2 Approximate Frequency of Occurrence of the Most Common Classic Mistakes

Rank Classic Mistake Approximate Frequency of
Occurrence

1 Overly optimistic schedules 60%-70%

2 Unrealistic expectations 60%-70%

3 Shortchanged quality assurance 60%-70%

4 Noisy, crowded offices 60%-70%

5 Excessive multi-tasking 55%-65%

6 Feature creep 55%-65%

7 Insufficient risk management 55%-65%

8 Confusing estimates with targets 55%-65%

9 Wishful thinking 55%-65%

10 Omitting necessary tasks from estimates 50%-60%

For details on the modeling technique used to approximate the frequency of occurrence of these
mistakes, see “How Average Frequency of Occurrence is Modeled” in Appendix A. For a complete
table of mistakes and their modeled frequencies, see Appendix C, “Classic Mistakes by Modeled
Average Frequency.”

Some mistakes were found to occur much less often. The least frequently occurring mistakes are
listed in Table 3.

Table 3 Mistakes That are Least Frequently Reported to Occur Almost Always or Often

Rank Classic Mistake Frequency of Response

1 Switching tools in mid-project 3%

2 Lack of automated source control 14%

3 Research-oriented development 19%

4 Premature or too frequent convergence 24%

5 Overestimating savings from tools/methods 24%

6 Push me, pull me negotiation 26%

7 Silver-bullet syndrome 26%

8 Subcontractor failure 27%

9 Letting a team go dark 28%

10 Uncontrolled problem employees 29%

Table 4 shows the approximate frequency of occurrence of these mistakes.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 8

Table 4 Approximate Frequency of Occurrence of the Least Common Classic Mistakes

Rank Classic Mistake Frequency of Response

1 Switching tools in mid-project 15%-25%

2 Lack of automated source control 20%-30%

3 Research-oriented development 25%-35%

4 Premature or too frequent convergence 30%-40%

5 Overestimating savings from tools/methods 30%-40%

6 Push me, pull me negotiation 30%-40%

7 Silver-bullet syndrome 30%-40%

8 Subcontractor failure 30%-40%

9 Letting a team go dark 35%-45%

10 Uncontrolled problem employees 35%-45%

The mistakes listed in Tables 3-4 occur infrequently enough that it could be argued that they do
not qualify as “classic” mistakes. If the impact of a mistake is high enough, however, it should
still be considered to be a classic mistake.

Most Severe Classic Mistakes
For each mistake, respondents were also asked to judge, again based on their personal experi-
ence, how serious each mistake is when it occurs. Respondents were able to select from among
the following responses:

 Catastrophic Impact

 Serious Impact

 Moderate Impact

 Hardly any Impact

 Don’t know / N/A

These categories were further clarified to apply to the “impact this mistake has on a project
team’s ability to deliver the project on-time, within budget, with the expected features, and
quality.”

Notably, none of the mistakes had a modal (most frequent) response of Catastrophic. Nearly all
of the mistakes had modal impacts of Serious (35 of 42). Seven mistakes had modal impacts of
Moderate.

Table 5 lists the classic mistakes that survey respondents most frequently reported have a Catas-
trophic or Serious impact.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 9

Table 5 Mistakes That are Most Frequently Reported to Produce Catastrophic or Serious Conse-
quences When They Occur

Rank Classic Mistake Frequency of Response

1 Unrealistic expectations 83%

2 Weak personnel 78%

3 Overly optimistic schedules 78%

4 Wishful thinking 76%

5 Shortchanged quality assurance 72%

6 Inadequate design 72%

7 Lack of project sponsorship 71%

8 Confusing estimates with targets 71%

9 Excessive multi-tasking 71%

10 Lack of user involvement 70%

Note that the percentages reported in Table 5 are not the frequency of occurrence of these mis-
takes. They are the frequency with which survey respondents replied that the mistakes had
Catastrophic or Serious consequences when they occur.

For a complete table of mistakes and the severities reported for them, see Appendix D, “Classic
Mistakes by Reported Severity.”

We also computed the average impact of each Classic Mistake when it occurs. Table 6 lists the
average impact from the survey data.

Table 6 Average Impact of Classic Mistakes When They Occur

Rank Classic Mistake Average Impact

1 Unrealistic expectations Serious

2 Weak personnel Serious

3 Wishful thinking Serious

4 Overly optimistic schedules Serious

5 Lack of project sponsorship Serious

6 Shortchanged quality assurance Serious

7 Inadequate design Serious

8 Lack of user involvement Serious

9 Confusing estimates with targets Serious

10 Excessive multi-tasking Serious

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 10

The 10 most severe classic mistakes all had average impacts of Serious. For a complete table of
mistakes and their average impacts, see Appendix E, “Classic Mistakes by Average Severity.”

Most mistakes were found to have an average impact of Serious, but a few mistakes were found
to have notably lower impact than the rest. Table 7 lists the Classic Mistakes that were reported
by fewer than 50% of survey respondents to have Catastrophic or Serious impact.

Table 7 Mistakes That are Least Frequently Reported to Produce Catastrophic or Serious Conse-
quences

Rank Classic Mistake
Percent Catastrophic and Serious
Responses

1 Premature or too frequent convergence 34%

2 Overestimating savings from tools/methods 39%

3 Developer gold-plating 41%

4 Wasted time in the fuzzy front end 48%

5 Adding people to a late project 48%

6 Switching tools in mid-project 49%

7 Omitting necessary tasks from estimates 49%

The first two Classic Mistakes had average impacts of Moderate. The other five had average im-
pacts of Moderate-Serious.

Most Damaging Classic Mistakes Overall
The risk management field’s concept of risk exposure helps to prioritize the Classic Mistakes
based on this survey data. In risk management, Risk Exposure, also known as RE, is calculated by
multiplying the likelihood of a risk by its severity. Statistically speaking, the result is the Ex-
pected Value of the risk. Sorting risks by their Risk Exposure provides a rough prioritization of the
risks.

We applied a similar concept to the results of this Classic Mistakes survey to assess which Classic
Mistakes are most problematic overall. We multiplied the approximate average frequency of
each Classic Mistake times its average severity to arrive at a Mistake Exposure Index (MEI). This
index ranges from 0 to 10, with 0 being the lowest exposure and 10 being the highest. Of the
Classic Mistakes covered by this survey, the actual range was 2.6 to 9.9.

Table 8 shows the 10 mistakes that were found to have the highest MEIs.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 11

Table 8 Highest Mistake Exposure Indices (MEI)

Rank Classic Mistake MEI

1 Unrealistic expectations 9.9

2 Overly optimistic schedules 9.6

3 Shortchanged quality assurance 9.0

4 Wishful thinking 8.9

5 Confusing estimates with targets 8.8

6 Excessive multi-tasking 8.7

7 Feature creep 8.1

8 Noisy, crowded offices 7.8

9 Abandoning planning under pressure 7.8

10 Insufficient risk management 7.8

These are essentially the worst of the Classic Mistakes overall. Table 9 summarizes the average
frequencies and severities of the risks with the highest MEIs.

Table 9 Classic Mistakes with the Highest Mistake Exposure

Rank Classic Mistake Average Frequency Average Severity

1 Unrealistic expectations 60%-70% Serious

2 Overly optimistic schedules 60%-70% Serious

3 Shortchanged quality assurance 60%-70% Serious

4 Wishful thinking 55%-65% Serious

5 Confusing estimates with targets 55%-65% Serious

6 Excessive multi-tasking 55%-65% Serious

7 Feature creep 55%-65% Moderate-Serious

8 Noisy, crowded offices 60%-70% Moderate-Serious

9 Abandoning planning under pressure 50%-60% Serious

10 Insufficient risk management 55%-65% Moderate-Serious

A few mistakes were found to occur relatively infrequently and to have relatively low severity
when they do occur. It would therefore seem to be less important to guard against these mis-
takes than to guard against the mistakes with higher MEIs. Table 10 lists these mistakes.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 12

Table 10 Classic Mistakes with the Lowest Mistake Exposure

Rank Classic Mistake Average Frequency Average Severity

1 Switching tools in mid-project 15%-25% Moderate-Serious

2 Lack of automated source control 20%-30% Serious

3 Premature or too frequent conver-
gence

30%-40% Moderate

4 Overestimating savings from
tools/methods

30%-40% Moderate

5 Research-oriented development 25%-35% Moderate-Serious

For a complete list of Classic Mistakes organized by MEI, see Appendix F, “Classic Mistakes by
Mistake Exposure Index (MEI).”

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 13

Conclusions
Several conclusions can be drawn from the results of this survey.

 Some mistakes are made frequently enough to be considered “classic” mistakes. Our sur-
vey identified 20 mistakes that appear to made at least half the time.

 The mistakes identified in this survey generally have significant impacts. The least severe
mistake in our survey had an average impact of Moderate, and only two mistakes were rated
that low. Twenty four mistakes were rated as having Moderate-Serious impact, and thirteen
were rated as having Serious impact.

 2008’s new additions to the list are significant. Two of the ten mistakes with the highest
Mistake Exposure Indexes (MEIs) were newly identified in 2007: Confusing estimates with tar-
gets and Excessive multi-tasking. These are not new phenomenon, but rather indicate that
our understanding of software’s classic mistakes is continuing to improve.

 It is reasonable to characterize the mistakes surveyed as “Classic Mistakes.” Most of the
mistakes included in the survey were reported to occur fairly frequently and to have signifi-
cant adverse impact when they do occur. Thus it is accurate to refer to these mistakes as
“mistakes that have been made so often, by so many people, that the consequences of mak-
ing these mistakes should be predictable and the mistakes themselves should be avoidable.”

 A few mistakes can probably be removed from the list. A few mistakes had both low fre-
quency and low impact. While it is still desirable to avoid making those mistakes—just as it is
desirable to avoid making any mistakes whatsoever—in the interest of restricting the list of
mistakes to a manageable number, the bottom-tier mistakes should receive less attention
than the top-tier mistakes.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 14

Appendices

A. Survey Methodology

Solicitation
Survey respondents were recruited via direct e-mail solicitation using Construx’s in-house email
list, a blog entry by Steve McConnell, and a posting on Construx’s Software Development Best
Practices discussion forum. The survey itself can be found at www.construx.com/classicmistakes.

Time Frame
Survey data was collected from May 30, 2007 through July 19, 2007.

Respondents
The survey was completed by 558 respondents. Table A-1 lists the roles that respondents re-
ported.

Table A-1. Survey Respondent Roles

Role Percentage

Lead developer 40%

Technical lead / architect 35%

Individual contributor / developer 34%

Manager 14%

Director 5%

Individual contributor / tester 4%

Lead tester 4%

Vice President 3%

Respondents were allowed to identify more than one role, so the survey responses sum to more
than 100%. The proportions of respondents in this survey approximate the proportion of workers
playing the roles industry wide. We did not find any significant differences in survey responses
that were correlated with different roles.

Table A-2 lists the types of software with which survey respondents are working.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 15

Table A-2 Survey Respondent Software Types

Software Type Percentage

Web, general (e-Commerce, web front ends, etc.) 62%

Business Systems/In house 49%

Shrink wrap/commercial (desktop applications,
vertical market applications, etc.)

35%

Embedded 13%

Other 12%

System Critical 11%

Systems (OS, device drivers, etc.) 9%

SaaS 7%

Respondents were allowed to identify more than one type of software, so the survey responses
sum to more than 100%. Based on these responses, these survey results are most applicable to
Web software, business systems software, and shrink wrap/commercial software. We did not
analyze whether there were any differences in the responses correlated with type of software.

How Average Frequency of Occurrence is Modeled
Respondents were able to select from among the following responses:

 Almost Always (75%+)

 Often (50-74%)

 Sometimes (25-49%)

 Rarely (<25%)

 Don’t know / N/A

To compute the average frequencies of occurrence, midpoints of the range for each category
were used. For example, Often goes from 50%-74.9%, the midpoint of which is 62.5%. So for a
classic mistake that a survey respondent said occurred Often, the number 62.5% was used as the
estimated frequency of occurrence for that response. Table A-3 lists the frequencies used to
calculate the approximate average frequencies.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 16

Table A-3 Category Modeling for Frequency of Occurrence Data

Survey Category
Frequency Used to Calculate Approximate
Average Frequencies

Almost Always (75%+) 87.5%

Often (50-74%) 62.5%

Sometimes (25-49%) 37.5%

Rarely (<25%) 12.5%

Don’t know / N/A Not included

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 17

B. Classic Mistakes by Reported Frequency

Table B-1 Frequency with Which Mistakes are Reported to Occur Almost Always or Often

Mistake Frequency of Response

Overly optimistic schedules 77%

Unrealistic expectations 73%

Excessive multi-tasking 71%

Shortchanged quality assurance 70%

Noisy, crowded offices 69%

Feature creep 69%

Wishful thinking 68%

Insufficient risk management 68%

Confusing estimates with targets 65%

Omitting necessary tasks from estimates 61%

Abandoning planning under pressure 59%

Shortchanged upstream activities 58%

Heroics 58%

Lack of user involvement 57%

Inadequate design 54%

Insufficient planning 54%

Wasted time in the fuzzy front end 52%

Planning to catch up later 51%

Weak personnel 49%

Undermined motivation 45%

Unclear project vision 44%

Requirements gold-plating 44%

Code-like-hell programming 44%

Lack of project sponsorship 42%

Politics placed over substance 37%

Adding people to a late project 36%

Friction between dev & customers 36%

Developer gold-plating 35%

Lack of stakeholder buy-in 33%

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 18

Mistake Frequency of Response

Trusting the map more than the terrain 32%

Assuming global development has little
impact

30%

Outsourcing to reduce cost 29%

Uncontrolled problem employees 29%

Letting a team go dark 28%

Subcontractor failure 27%

Silver-bullet syndrome 26%

Push me, pull me negotiation 26%

Overestimating savings from
tools/methods

24%

Premature or too frequent convergence 24%

Research-oriented development 19%

Lack of automated source control 14%

Switching tools in mid-project 3%

Note: The percentages in this table refer to the percentage of respondents who provided certain
answers, not to the frequency with which each mistake occurs.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 19

C. Classic Mistakes by Modeled Average Frequency

Table C-1 Approximate Average Frequency of Mistakes

Mistake Approximate Average Reported Frequency

Overly optimistic schedules 60%-70%

Unrealistic expectations 60%-70%

Shortchanged quality assurance 60%-70%

Noisy, crowded offices 60%-70%

Excessive multi-tasking 55%-65%

Feature creep 55%-65%

Insufficient risk management 55%-65%

Confusing estimates with targets 55%-65%

Wishful thinking 55%-65%

Omitting necessary tasks from estimates 50%-60%

Shortchanged upstream activities 50%-60%

Heroics 50%-60%

Abandoning planning under pressure 50%-60%

Lack of user involvement 50%-60%

Inadequate design 50%-60%

Insufficient planning 50%-60%

Wasted time in the fuzzy front end 45%-55%

Planning to catch up later 45%-55%

Weak personnel 45%-55%

Unclear project vision 45%-55%

Undermined motivation 45%-55%

Requirements gold-plating 40%-50%

Code-like-hell programming 40%-50%

Lack of project sponsorship 40%-50%

Politics placed over substance 40%-50%

Developer gold-plating 40%-50%

Friction between dev & customers 40%-50%

Adding people to a late project 35%-45%

Lack of stakeholder buy-in 35%-45%

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 20

Mistake Approximate Average Reported Frequency

Trusting the map more than the terrain 35%-45%

Uncontrolled problem employees 35%-45%

Letting a team go dark 35%-45%

Subcontractor failure 30%-40%

Outsourcing to reduce cost 30%-40%

Assuming global development has little
impact

30%-40%

Silver-bullet syndrome 30%-40%

Overestimating savings from
tools/methods

30%-40%

Push me, pull me negotiation 30%-40%

Premature or too frequent convergence 30%-40%

Research-oriented development 25%-35%

Lack of automated source control 20%-30%

Switching tools in mid-project 15%-25%

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 21

D. Classic Mistakes by Reported Severity

Table D-1 Frequency with which Mistakes are Reported to Produce Serious or Catastrophic Con-
sequences

Mistake Frequency of Response

Unrealistic expectations 83%

Weak personnel 78%

Overly optimistic schedules 78%

Wishful thinking 76%

Shortchanged quality assurance 72%

Inadequate design 72%

Lack of project sponsorship 71%

Confusing estimates with targets 71%

Excessive multi-tasking 71%

Lack of user involvement 70%

Code-like-hell programming 68%

Unclear project vision 68%

Abandoning planning under pressure 67%

Shortchanged upstream activities 67%

Lack of automated source control 65%

Insufficient planning 64%

Heroics 62%

Subcontractor failure 61%

Lack of stakeholder buy-in 61%

Outsourcing to reduce cost 61%

Feature creep 61%

Politics placed over substance 61%

Insufficient risk management 60%

Friction between dev & customers 59%

Undermined motivation 59%

Uncontrolled problem employees 59%

Planning to catch up later 58%

Assuming global development has little
impact

58%

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 22

Mistake Frequency of Response

Push me, pull me negotiation 56%

Requirements gold-plating 56%

Silver-bullet syndrome 56%

Research-oriented development 53%

Noisy, crowded offices 51%

Letting a team go dark 50%

Trusting the map more than the terrain 50%

Omitting necessary tasks from estimates 49%

Switching tools in mid-project 49%

Adding people to a late project 48%

Wasted time in the fuzzy front end 48%

Developer gold-plating 41%

Overestimating savings from
tools/methods

39%

Premature or too frequent convergence 34%

Note: The percentages in this table refer to the percentage of respondents who provided certain
answers, not to the frequency with which each mistake occurs.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 23

E. Classic Mistakes by Average Severity

Table E-1 Average Severity of Mistakes When They Occur

Mistake Average Severity When Mistake Occurs

Unrealistic expectations Serious

Weak personnel Serious

Wishful thinking Serious

Overly optimistic schedules Serious

Lack of project sponsorship Serious

Shortchanged quality assurance Serious

Inadequate design Serious

Lack of user involvement Serious

Confusing estimates with targets Serious

Excessive multi-tasking Serious

Abandoning planning under pressure Serious

Code-like-hell programming Serious

Unclear project vision Serious

Lack of automated source control Serious

Shortchanged upstream activities Serious

Heroics Serious

Politics placed over substance Moderate-Serious

Friction between dev & customers Moderate-Serious

Outsourcing to reduce cost Moderate-Serious

Insufficient planning Moderate-Serious

Feature creep Moderate-Serious

Subcontractor failure Moderate-Serious

Uncontrolled problem employees Moderate-Serious

Lack of stakeholder buy-in Moderate-Serious

Insufficient risk management Moderate-Serious

Undermined motivation Moderate-Serious

Planning to catch up later Moderate-Serious

Assuming global development has little
impact

Moderate-Serious

Silver-bullet syndrome Moderate-Serious

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 24

Mistake Average Severity When Mistake Occurs

Research-oriented development Moderate-Serious

Push me, pull me negotiation Moderate-Serious

Requirements gold-plating Moderate-Serious

Trusting the map more than the terrain Moderate-Serious

Letting a team go dark Moderate-Serious

Noisy, crowded offices Moderate-Serious

Omitting necessary tasks from estimates Moderate-Serious

Wasted time in the fuzzy front end Moderate-Serious

Adding people to a late project Moderate-Serious

Switching tools in mid-project Moderate-Serious

Developer gold-plating Moderate-Serious

Overestimating savings from
tools/methods

Moderate

Premature or too frequent convergence Moderate

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 25

F. Classic Mistakes by Mistake Exposure Index (MEI)

Table F-1 Complete List of Mistake Exposure Indices

Mistake MEI

Unrealistic expectations 9.9

Overly optimistic schedules 9.6

Shortchanged quality assurance 9.0

Wishful thinking 8.9

Confusing estimates with targets 8.8

Excessive multi-tasking 8.7

Feature creep 8.1

Noisy, crowded offices 7.8

Abandoning planning under pressure 7.8

Insufficient risk management 7.8

Heroics 7.7

Shortchanged upstream activities 7.6

Inadequate design 7.6

Lack of user involvement 7.6

Weak personnel 7.4

Insufficient planning 7.2

Omitting necessary tasks from estimates 7.2

Planning to catch up later 6.9

Code-like-hell programming 6.9

Unclear project vision 6.9

Lack of project sponsorship 6.8

Wasted time in the fuzzy front end 6.6

Politics placed over substance 6.4

Requirements gold-plating 6.3

Undermined motivation 6.3

Friction between dev & customers 6.1

Trusting the map more than the terrain 5.8

Outsourcing to reduce cost 5.7

Assuming global development has little
impact

5.6

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 26

Mistake MEI

Adding people to a late project 5.5

Lack of stakeholder buy-in 5.5

Uncontrolled problem employees 5.4

Push me, pull me negotiation 5.3

Subcontractor failure 5.2

Letting a team go dark 5.2

Silver-bullet syndrome 5.1

Developer gold-plating 5.1

Research-oriented development 4.8

Overestimating savings from
tools/methods

4.4

Premature or too frequent convergence 4.3

Lack of automated source control 3.9

Switching tools in mid-project 2.6

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 27

G. Classic Mistake Descriptions

Table G-1 Classic Mistake Descriptions

Mistake Description

Abandonment of
planning under
pressure

Projects make plans and then routinely abandon them when they run
into schedule trouble. This would not be a problem if the plans were
updated to account for the schedule difficulties. The problem arises
when the plans are abandoned with no substitute, which tends to make
the project slide into code-and-fix mode.

Adding people to a
late project

When a project is behind, adding people can take more productivity
away from existing team members than it adds through new ones. Add-
ing people to a late project has been likened to pouring gasoline on a
fire.

Assuming global
development has a
negligible impact on
total effort

Multi-site development increases communication and coordination effort
between sites. The greater the differences among the sites in terms of
time zones, company cultures, and national cultures, the more the total
project effort will increase. Some companies naively assume that chang-
ing from single-site development to multi-site development will have a
negligible impact on effort, but studies have shown that international
development will typically increase effort by about 40% compared to
single-site development.

Code-like-hell
programming

Some organizations think that fast, loose, all-as-you-go coding is a route
to rapid development. If the developers are sufficiently motivated, they
reason, they can overcome any obstacles. This is far from the truth. The
entrepreneurial model is often a cover for the old code-and-fix para-
digm combined with an ambitious schedule, and that combination al-
most never works.

Confusing estimates
with targets

Some organizations set schedules based purely on the desirability of
business targets without also creating analytically-derived cost or
schedule estimates. While target setting is not bad in and of itself, some
organizations actually refer to the target as the ‘estimate,’ which lends
it an unwarranted and misleading authenticity as a foundation for creat-
ing plans, schedules, and commitments.

Developer gold-
plating

Developers are fascinated by new technology and are sometimes anxious
to try out new capabilities of their language or environment or to create
their own implementation of a slick feature they saw in another prod-
uct—whether or not it’s required in their product. The effort required to
design, implement, test, document, and support features that are not
required adds cost and lengthens the schedule.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 28

Mistake Description

Excessive multi-
tasking

When software developers are assigned to more than one project, they
must ‘task switch’ as they change their focus from one project to an-
other. They must get out of ‘flow’ on one project and into ‘flow’ on
another. Task switching can be a significant factor—some studies have
said that each task switch in software development can incur a 5-30
minute downtime as a developer works out of flow on one project and
works into flow on the other.

Feature creep The average project experiences about a 25-percent change in require-
ments over its lifetime. Such a change produces at least a 25-percent
addition to the software effort and schedule, which is often unac-
counted for in the project’s plans and unacknowledged in the project’s
status reports.

Friction between
developers and
customers

Friction between developers and customers can arise in several ways.
Customers may feel that developers are not cooperative when they re-
fuse to sign up for the development schedule that the customers want
or when they fail to deliver on their promises. Developers may feel that
customers are unreasonably insisting on unrealistic schedules or re-
quirements changes after requirements have been baselined. There
might simply be personality conflicts between the two groups. The pri-
mary effect of this friction is poor communication, and the secondary
effects of poor communication include poorly understood requirements,
poor user-interface design, and, in the worst case, customers’ refusing
to accept the completed product.

Heroics Some project teams place a high emphasis on project heroics, thinking
that the certain kinds of heroics can be beneficial. However, emphasiz-
ing heroics in any form usually does more harm than good. Sometimes
there is a higher premium placed on a can-do attitudes than on steady
and consistent progress and meaningful progress reporting. By elevating
can-do attitudes above accurate-and-sometimes-gloomy status report-
ing, such project managers undercut their ability to take corrective ac-
tion. They don’t even know they need to take corrective action until the
damage has been done. Can-do attitudes can escalate minor setbacks
into true disasters. An emphasis on heroics can encourage extreme risk
taking and discourage cooperation among the many stakeholders in the
software development process.

Inadequate design A special case of shortchanging upstream activities is inadequate design.
Rush projects undermine design by not allocating enough time for it and
by creating a pressure-cooker environment that makes thoughtful con-
sideration of design alternatives difficult. This results in going through
several time-consuming design cycles before the system can be com-
pleted.

Insufficient planning Planning can be done well, and planning can be done poorly. But some
projects suffer from simply not doing enough planning at all, i.e., not
prioritizing planning as an important activity.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 29

Mistake Description

Insufficient risk
management

Some mistakes have been made often enough to be considered classic
mistakes. Other potential problems need to be identified project-by-
project through risk management. The most common problem with risk
management is not doing any risk management at all. The second most
common problem with risk management is not doing enough risk man-
agement.

Lack of automated
source-code control

Failure to use automated source-code control exposes projects to need-
less risks. Without it, if two developers are working on the same part of
the program, they have to coordinate their work manually and risk acci-
dentally overwriting someone else’s work. People develop new code to
out-of-date interfaces and then have to redesign their code when they
discover that they were using the wrong version of the interface. Users
report defects that you can’t reproduce because you have no way to
recreate the build they were using.

Lack of effective
project sponsorship

High-level project sponsorship is necessary to support many aspects of
effective development including realistic estimates, adequate resource
allocation, and achievable schedules, as well as helping to clear road-
blocks once the project is underway. Without an effective project spon-
sor, other high-level personnel in your organization can force you to
accept unrealistic deadlines or make changes that undermine your pro-
ject.

Lack of stakeholder
buy-in

All of the major players in a software-development effort must buy in to
the project. That includes the executive sponsor, team leader, team
members, marketing, end-users, customers, and anyone else who has a
stake in it. The close cooperation that occurs only when you have com-
plete buy-in from all stakeholders allows for precise coordination of a
software development effort that is impossible to attain without good
buy-in.

Lack of user
involvement

User involvement is necessary for defining meaningful requirements.
The degree of user involvement can affect how quickly or how slowly
issues get resolved.

Letting a team go
dark

On some projects, management allows a team to work with little over-
sight and little visibility into the team’s progress. This is known as “let-
ting a team go dark.” This practice restricts visibility into project
status, and the project doesn’t receive timely warnings of impending
schedule slips. Before you can keep a project on track, you have to be
able to tell whether it’s on track, and letting a team go dark prevents
that.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 30

Mistake Description

Noisy, crowded
offices

About 60 percent of developers report that their work environments are
neither sufficiently quiet nor sufficiently private. For many developers,
this can prevent concentration and prevent achieving a state of ‘flow’
that is helpful in achieving high levels of productivity. Workers who oc-
cupy quiet, private offices tend to perform significantly better than
workers who occupy noisy, crowded work bays or cubicles.

Omitting necessary
tasks from
estimates

If people don’t keep careful records of previous projects, they forget
about the less visible tasks, but those tasks add up. Forgotten activities
can add 20 to 30 percent to a development schedule.

Outsourcing to
reduce cost

Valid reasons to outsource include accessing capabilities that you don’t
have in house, diversifying your labor force, freeing up your in-house
staff to focus on mission-critical or core-competency projects, adding
“surge capacity” to your development staff, and supporting around-the-
clock development. Many organizations that have outsourced for these
reasons have accomplished their objectives. However, some organiza-
tions outsource primarily to reduce development costs, and historically
those initiatives have not succeeded. Usually outsourcing motivated by
cost savings results in higher costs and longer schedules.

Overestimated
savings from new
tools or methods

Organizations often assume that first-time usage of a new tool or
method will reduce costs and shorten schedules. In reality, first-time
use of a new tool or method tends to be subject to a learning curve, and
the safest planning assumption is to assume a short-term increase in
cost and schedule before the benefits of the new tool or method kick in.

Overly optimistic
schedules

The challenges faced by someone building a three-month application are
quite different than the challenges faced by someone building a one-
year application. Setting an overly optimistic schedule sets a project up
for failure by under scoping the project, undermining effective plan-
ning, and abbreviating critical upstream development activities such as
requirements analysis and design. It also puts excessive pressure on de-
velopers, which hurts developer morale and productivity.

Planning to catch up
later

If you’re working on a project and it takes you four weeks to meet your
first two-week milestone, what’s your status? You’re know that you’re
behind schedule, but will you stay behind schedule, or will you catch up
later? Project planners commonly plan to catch up later, but they rarely
do. Most projects that get behind schedule stay behind schedule.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 31

Mistake Description

Politics placed over
substance

Larry Constantine reported on four teams that had four different kinds
of political orientations. “Politicians” specialized in “managing up”—
concentrating on relationships with their managers. “Researchers” con-
centrated on scouting out and gathering information. “Isolationists”
kept to themselves, creating project boundaries that they kept closed
to non-team members. “Generalists” did a little bit of everything: they
tended their relationships with their managers, performed research and
scouting activities, and coordinated with other teams through the
course of their normal workflow. Constantine reported that initially the
political and generalist teams were both well regarded by top manage-
ment. But after a year and a half, the political team was ranked dead
last. Putting politics over results is fatal to software development effec-
tiveness.

Premature or too
frequent conver-
gence

Shortly before a public software release there is a push to prepare the
software for release—improve the product’s performance, create final
documentation, stub out functionality that’s not going to be ready for
the release, perform end-to-end testing including tests that can’t be
automated, test the setup program, and so on. On rush projects, there
is a tendency to force convergence too early. If the software isn’t close
enough to a releasable state, the attempted convergence will fail, and
the team will need to attempt to converge again later in the project.
The extra convergence attempts waste time and prolong the schedule.

Push me, pull me
negotiation

One bizarre negotiating ploy occurs when a manager approves a sched-
ule slip on a project that’s progressing slower than expected and then
adds completely new tasks after the schedule change. The underlying
reason for this is hard to fathom because the manager who approves the
schedule slip is implicitly acknowledging that the schedule was in error.
But once the schedule has been corrected, the same person takes ex-
plicit action to make it wrong again.

Requirements gold-
plating

Requirements gold plating is the addition of requirements or the expan-
sion of requirements without a clear business justification. Require-
ments gold plating can be done by end users who want the “system to
end all systems” or it can be done by developers who are sometimes
more interested in complex capabilities than real users are.

Research-oriented
development

Some projects have goals that push the state of the art—algorithms,
speed, memory usage, and so on. That’s fine, but when those projects
also have ambitious cost or schedule goals, the combination of advanc-
ing the state of the art with a tight budget on a short schedule isn’t
achievable.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 32

Mistake Description

Shortchanged
quality assurance

Projects that are in a hurry often cut corners by eliminating design and
code reviews, eliminating test planning, and performing only perfunc-
tory testing. It is common for design reviews and code reviews to
be given short shrift in order to achieve a perceived schedule advan-
tage. This often results in the project reaching its feature-complete
milestone but then still being too buggy to release.

Shortchanged
upstream activities

Projects sometimes cut out non-coding activities such as requirements,
architecture, and design. Also known as “jumping into coding,” the re-
sults of this mistake are predictable. Projects that skimp on upstream
activities typically have to do the same work downstream at anywhere
from 10 to 100 times the cost of doing it earlier.

Silver-bullet
syndrome

On some projects, there is an over reliance on the advertised benefits
of previously unused technologies, tools, or 3rd party applications and
too little information about how well they would do in the current de-
velopment environment. When project teams latch onto a single new
methodology or new technology and expect it to solve their cost, sched-
ule, or quality problems, they are inevitably disappointed.

Subcontractor
failure

Companies sometimes subcontract pieces of a project when they are too
rushed to do the work in-house. (“Subcontractor” can refer either to an
individual or to an outsourcing firm.) But subcontractors frequently de-
liver work that’s late, that’s of unacceptably low quality, or that fails to
meet specifications. Risks such as unstable requirements or ill-defined
interfaces can be magnified when you bring a subcontractor into the
picture. If the subcontractor relationship isn’t managed carefully, the
use of subcontractors can undermine a project’s goals. (Note: This ques-
tion deals specifically with subcontracting part of a project—other items
focus on outsourcing full projects.)

Switching
development tools
in the middle of a
project

This is an old standby that hardly ever works. Sometimes it can make
sense to upgrade incrementally within the same product line, from ver-
sion 3 to version 3.1 or sometimes even to version 4. But the learning
curve, rework, and inevitable mistakes made with a totally new tool
usually cancel out any benefit when you’re in the middle of a project.

Trusting the map
more than the
terrain

Project teams sometimes invest more confidence in the plans they cre-
ate than in the experience their project is giving them. Sometimes they
will trust the delivery date written on a plan more than the delivery
date implied by the project’s track record. If the project reality and the
project plans disagree, the project’s reality is correct, and the plans
must be wrong. The longer a project team trusts the plans rather than
the project reality—i.e., trusts the map more than the terrain—the more
difficulty they will have adapting their course successfully.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 33

Mistake Description

Unclear project
vision

The lack of clearly defined and communicated vision undermines the
organization’s ability to make and execute project-level plans that are
consistent with organization-level goals. Without a clear understanding
of the vision, people draw their own conclusions about the purpose of
the project and how it relates to their day-to-day work, and they make
decisions that run counter to the project’s business objectives. The un-
clear vision contributes to changes in project direction, including de-
tailed requirements; detailed plans that are misaligned with project
priorities; and, ultimately, inability to meet schedule commitments.

Uncontrolled
problem employees

Failure to deal with problem personnel (e.g., a prima donna program-
mer) can threaten development effectiveness. This is a common prob-
lem and has been well-understood at least since Gerald Weinberg pub-
lished Psychology of Computer Programming in 1971. Failure to take
action to deal with a problem employee is the most common complaint
that team members have about their leaders.

Undermined
motivation

Study after study has shown that motivation probably has a larger effect
on productivity and quality than any other factor. On some projects,
management can undermine morale throughout the project. Examples
include giving a hokey pep talk, going on a long vacation while the team
works through the holidays, and providing bonuses that work out to less
than a dollar per overtime hour at the end.

Unrealistic
expectations

One of the most common causes of friction between developers and
their customers or managers is unrealistic expectations. Often custom-
ers simply start with unrealistic expectations (which is probably just
human nature). Sometimes project managers or developers ask for trou-
ble by getting project approval based on optimistic estimates. A Stan-
dish Group survey listed realistic expectations as one of the top five
factors needed to ensure the success of an in-house business-software
project.

Wasted time during
the fuzzy front end

The “fuzzy front end” is the time before the project starts, the time
normally spent in the approval and budgeting process. It’s not uncom-
mon for a project to spend months or years in the fuzzy front end and
then to come out of the gates with an aggressive schedule.

Weak personnel After motivation, either the individual capabilities of the team members
or their relationship as a team probably has the greatest influence on
productivity. Hiring from the bottom of the barrel can threaten a devel-
opment effort. On some projects, personnel selections were made with
an eye toward who could be hired fastest instead of who would get the
most work done over the life of the project. That practice gets the pro-
ject off to a quick start but doesn’t set it up for successful completion.

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 34

Mistake Description

Wishful thinking Wishful thinking isn’t just optimism. It’s closing your eyes and hoping
something works when you have no reasonable basis for thinking it will.
Wishful thinking at the beginning of a project leads to big blowups at
the end of a project. It undermines meaningful planning and can be at
the root other problems.”

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 35

H. Classic Mistakes Summary, Alphabetical

Table H-1 Classic Mistakes Summary, Alphabetical

Mistake MEI

Almost
Always
and Often
Responses

Almost
Always
Responses

Modal
Frequency

Modeled
Average
Frequency

Catastrophic
and Serious
Responses

Catastrop
hic
Responses

Modal
Severity

Average
Severity

Abandoning planning
under pressure

7.8 59% 25% Often 50%-60% 67% 21% Serious Serious

Adding people to a
late project

5.5 36% 12% Sometimes 35%-45% 48% 10% Moderate Moderate-
Serious

Assuming global de-
velopment has little
impact

5.6 30% 10% Rarely 30%-40% 58% 16% Serious Moderate-
Serious

Code-like-hell pro-
gramming

6.9 44% 15% Sometimes 40%-50% 68% 21% Serious Serious

Confusing estimates
with targets

8.8 65% 36% Almost
always

55%-65% 71% 18% Serious Serious

Developer gold-
plating

5.1 35% 8% Sometimes 40%-50% 41% 5% Moderate Moderate-
Serious

Excessive multi-
tasking

8.7 71% 34% Often 55%-65% 71% 17% Serious Serious

Feature creep 8.1 69% 32% Often 55%-65% 61% 13% Serious Moderate-
Serious

Friction between dev
& customers

6.1 36% 13% Sometimes 40%-50% 59% 24% Serious Moderate-
Serious

Heroics 7.7 58% 26% Often 50%-60% 62% 19% Serious Serious

Inadequate design 7.6 54% 20% Sometimes 50%-60% 72% 21% Serious Serious

Insufficient planning 7.2 54% 21% Often 50%-60% 64% 14% Serious Moderate-
Serious

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 36

Mistake MEI

Almost
Always
and Often
Responses

Almost
Always
Responses

Modal
Frequency

Modeled
Average
Frequency

Catastrophic
and Serious
Responses

Catastrop
hic
Responses

Modal
Severity

Average
Severity

Insufficient risk man-
agement

7.8 68% 34% Often 55%-65% 60% 10% Serious Moderate-
Serious

Lack of project spon-
sorship

6.8 42% 12% Sometimes 40%-50% 71% 26% Serious Serious

Lack of automated
source control

3.9 14% 6% Rarely 20%-30% 65% 32% Serious Serious

Lack of stakeholder
buy-in

5.5 33% 6% Sometimes 35%-45% 61% 13% Serious Moderate-
Serious

Lack of user involve-
ment

7.6 57% 21% Often 50%-60% 70% 20% Serious Serious

Letting a team go
dark

5.2 28% 10% Sometimes 35%-45% 50% 14% Serious Moderate-
Serious

Noisy, crowded of-
fices

7.8 69% 45% Almost
always

60%-70% 51% 8% Serious Moderate-
Serious

Omitting necessary
tasks from estimates

7.2 61% 26% Often 50%-60% 49% 5% Moderate Moderate-
Serious

Outsourcing to re-
duce cost

5.7 29% 10% Rarely 30%-40% 61% 25% Serious Moderate-
Serious

Overestimating sav-
ings from
tools/methods

4.4 24% 4% Rarely 30%-40% 39% 4% Moderate Moderate

Overly optimistic
schedules

9.6 77% 40% Almost
always

60%-70% 78% 24% Serious Serious

Planning to catch up
later

6.9 51% 20% Often 45%-55% 58% 10% Serious Moderate-
Serious

Politics placed over
substance

6.4 37% 15% Sometimes 40%-50% 61% 24% Serious Moderate-
Serious

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 37

Mistake MEI

Almost
Always
and Often
Responses

Almost
Always
Responses

Modal
Frequency

Modeled
Average
Frequency

Catastrophic
and Serious
Responses

Catastrop
hic
Responses

Modal
Severity

Average
Severity

Premature or too
frequent conver-
gence

4.3 24% 5% Rarely 30%-40% 34% 3% Moderate Moderate

Push me, pull me
negotiation

5.3 26% 6% Rarely 30%-40% 56% 12% Serious Moderate-
Serious

Requirements gold-
plating

6.3 44% 14% Sometimes 40%-50% 56% 9% Serious Moderate-
Serious

Research-oriented
development

4.8 19% 4% Rarely 25%-35% 53% 18% Serious Moderate-
Serious

Shortchanged quality
assurance

9.0 70% 40% Almost
always

60%-70% 72% 21% Serious Serious

Shortchanged up-
stream activities

7.6 58% 23% Often 50%-60% 67% 19% Serious Serious

Silver-bullet syn-
drome

5.1 26% 4% Sometimes 30%-40% 56% 14% Serious Moderate-
Serious

Subcontractor failure 5.2 27% 8% Rarely 30%-40% 61% 18% Serious Moderate-
Serious

Switching tools in
mid-project

2.6 3% 0% Rarely 15%-25% 49% 16% Serious Moderate-
Serious

Trusting the map
more than the terrain

5.8 32% 9% Rarely 35%-45% 50% 15% Moderate Moderate-
Serious

Unclear project vi-
sion

6.9 44% 14% Sometimes 45%-55% 68% 18% Serious Serious

Uncontrolled problem
employees

5.4 29% 9% Sometimes 35%-45% 59% 14% Serious Moderate-
Serious

Undermined motiva-
tion

6.3 45% 14% Sometimes 45%-55% 59% 9% Serious Moderate-
Serious

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 38

Mistake MEI

Almost
Always
and Often
Responses

Almost
Always
Responses

Modal
Frequency

Modeled
Average
Frequency

Catastrophic
and Serious
Responses

Catastrop
hic
Responses

Modal
Severity

Average
Severity

Unrealistic expecta-
tions

9.9 73% 40% Almost
always

60%-70% 83% 32% Serious Serious

Wasted time in the
fuzzy front end

6.6 52% 22% Sometimes 45%-55% 48% 10% Moderate Moderate-
Serious

Weak personnel 7.4 49% 17% Sometimes 45%-55% 78% 27% Serious Serious

Wishful thinking 8.9 68% 30% Often 55%-65% 76% 26% Serious Serious

Software Development’s Classic Mistakes 2008

 Construx Software | Best Practices White Paper 39

About Construx
This white paper was created by Construx Software Builders, Inc. Construx Software is the mar-
ket leader in software development best practices training and consulting. Construx was founded
in 1996 by Steve McConnell, respected author and thought leader on software development best
practices. Steve’s books Code Complete, Rapid Development, and other titles are some of the
most accessible books on software development with more than a million copies in print in 20
languages. Steve’s passion for advancing the art and science of software engineering is shared by
Construx’s team of seasoned consultants. Their depth of knowledge and expertise has helped
hundreds of companies solve their software challenges by identifying and adopting practices that
have been proven to produce high quality software—faster, and with greater predictability.

Steve McConnell, CEO/Chief Software Engineer

steve.mcconnell@construx.com
+1(425) 636-0100

Jenny Stuart, VP Consulting

jenny.stuart@construx.com
+1(425) 636-0108

Matt Peloquin, CTO

matt.peloquin@construx.com
+1(425) 636-0104

Steve Tockey, Principal Consultant

steve.tockey@construx.com
+1(425) 636-0106

Mark Nygren, COO/VP Sales

mark.nygren@construx.com
+1(425) 636-0110

For more information about Construx’s support for software development best practices, please
see our website at www.construx.com, contact us at consulting@construx.com, or call us at
+1(866) 296-6300.

© 2008, Construx Software Builders, Inc. All rights reserved.

Construx Software Builders, Inc.

10900 NE 8th Street, Suite 1350

Bellevue, WA 98004

U.S.A.

This white paper may be reproduced and redistributed as long as it is reproduced and redistributed

in its entirety, including this copyright notice.

Construx, Construx Software, and CxOne are trademarks of Construx Software Builders, Inc. in the

United States, other countries, or both.

This paper is for informational purposes only. This document is provided “As Is” with no warranties

whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular

purpose, or any warranty otherwise arising out of any proposal, specification, or sample. Construx

Software disclaims all liability relating to use of information in this paper.

